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Abstract
The algebraic mean field method is applied to the symplectic Lie algebra
sp(3, R) that describes geometrical collective states in atomic nuclei. The
expectations of sp(3, R) generators define a symplectic density matrix. The
mean field approximation restricts the densities to a manifold that is a coadjoint
orbit of the transformation group Sp(3, R) and a level surface of the symplectic
Casimir functions. Compared to representation theory, mean field theory is
technically simpler, but yields similar predictions for physical properties of
collective states. The critical points of the energy functional on a coadjoint orbit
surface define rotational bands. The deformation, kinetic energy and Kelvin
circulation of principal axis symplectic rotors are determined as a function
of the angular momentum. Illustrative applications of coadjoint orbit theory
are reported for the yrast rotational bands of a light 20Ne and a heavy 166Er
deformed isotope.

The one-body Hermitian operators that are quadratic in the Cartesian position and momentum
coordinates generate the noncompact 21-dimensional symplectic Lie algebra sp(3, R) [1, 2].
The total number of oscillator quanta in the three Cartesian directions (N1, N2, N3) of an Elliott
su(3) highest weight vector labels an sp(3, R) irreducible representation (irrep). In addition to
the su(3) irrep, an sp(3, R) infinite-dimensional irrep space includes np–nh core-excited shell
model configurations for all whole numbers n. Repeated applications of the microscopic mass
quadrupole and monopole operators to the vectors in the Elliott su(3) irrep space create these
symplectic core excitations. The addition of symplectic configurations to the su(3) model
space enables the explanation of collective E2 and E0 transition rates using only bare nucleon
charges. The sp(3, R) model can also predict transverse E2 form factors that are sensitive to
the collective nuclear current [3].

The 15-dimensional general collective motion algebra gcm(3) is a Lie subalgebra of
sp(3, R). The gcm(3) Casimir is the length C of the Kelvin circulation vector that is an
important degree of freedom of the geometrical model. Its value, in conjunction with the
angular momentum, determines the character of nuclear rotation, namely, irrotational flow,
rigid rotation, or, more typically, an intermediate collective rotation. The infinite-dimensional
unitary irreps of gcm(3) are labelled by the integral values of C. The representation with
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zero circulation is indistinguishable from the irrotational flow model of Bohr and Mottelson.
Representations C > 0 correspond to the quantum Riemann ellipsoid model. The multiplicity
of the circulation C in an sp(3, R) irrep equals the multiplicity of the angular momentum L = C
in the generating su(3) irrep [4].

The symplectic sp(3, R) model unifies the geometrical collective model, associated with
the gcm(3) subalgebra, and the harmonic oscillator shell model, associated with the u(3)
subalgebra. But some important physical questions cannot be framed and answered with
precision in irreducible representation theory. For example, given a wavefunction from an
irrep of a dynamical symmetry model, does it correspond physically to the collective rigid
rotation of a prolate spheroid about its short principal axis? Another vexing problem for the
symplectic model is that the gcm(3) Casimir operator is a five-body operator that challenges
computation.

Algebraic mean field theory (AMFT) is an alternative way of formulating a dynamical
symmetry model. The rotating body-fixed frame is well defined in sp(3, R) AMFT. In this
noninertial frame, the shape, rotation axis and circulation are evaluated easily. Moreover, the
model space of AMFT is a finite-dimensional manifold while the unitary irreps of sp(3, R) are
infinite dimensional. Hartree–Fock and Hartree–Fock–Bogoliubov may be viewed as AMFTs
associated with the unitary and orthogonal groups, respectively [5, 6]. Recently, AMFT was
developed for the Elliott su(3) algebra [7–9]. This letter applies the algebraic mean field
method to sp(3, R). Assuming principal axis rotation, results are reported for the circulation,
deformation, kinetic energy and total energy as a function of the angular momentum.

For any Lie algebra, the AMFT space consists of the density matrices that are defined by the
expectations of the algebra’s operators. The Lie group of the algebra acts as a transformation
group on the densities via the coadjoint action. The mean field approximation limits the
densities to a single coadjoint orbit which is a surface contained in the space of all densities.
The Casimirs of the algebra are constant on each coadjoint orbit. The restriction to a coadjoint
orbit is the mathematical expression of dynamical symmetry in AMFT. The energy is a real-
valued function of the density; its critical points on a coadjoint orbit are the equilibrium mean
field densities.

Let (xαj , pαj ) denote the dimensionless Cartesian components of the position and
momentum vectors of particle α in a finite system of particles. They obey the canonical
commutation relation [xαj , pβk] = iδαβδjk . The symplectic generators are the Hermitian
one-body operators

Q̂jk =
∑

α

xαjxαk T̂ jk =
∑

α

pαjpαk N̂ jk =
∑

α

(
xαjpαk − 1

2
iδjk

)
. (1)

The observables Q̂jk and T̂ jk are the monopole–quadrupole tensors in position and momentum
space, respectively. The nine components N̂jk generate the Lie algebra gl(3, R) of the general
linear group. The antisymmetric parts of N, L̂i = εijkN̂jk , are the vector angular momentum
components. The gcm(3) algebra is spanned by the operators Q̂jk and N̂ jk .

The sp(3, R) matrix algebra consists of all 6 × 6 real matrices

S =
(

X −U

V −XT

)
(2)

where X,U,V are 3 × 3 real matrices and U,V are symmetric. The representation σ of the
algebra of matrices is defined by

σ(S) = i
∑
jk

(
XjkN̂jk +

1

2
UjkQ̂jk +

1

2
VjkT̂ jk

)
. (3)
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When S is a matrix in the symplectic Lie algebra, the operator σ(S) is a skew-adjoint one-body
operator. The set of operators is an sp(3, R) representation, [σ(S1), σ (S2)] = σ([S1, S2]).

The symplectic density matrix ρ corresponding to a normalized wavefunction � is

ρ =
(

nT t

−q −n

)
(4)

where the 3 × 3 real dimensionless matrices n, q, t are the expectations of the algebra
generators: qjk = 〈�|Q̂jk|�〉, tjk = 〈�|T̂ jk|�〉 and njk = 〈�|N̂jk|�〉. The quantum-
mechanical expectation of a symplectic Lie algebra representation σ(S) is

〈ρ, S〉 ≡ 1
2 tr(ρS) = −i〈�|σ(S)|�〉. (5)

Denote the symplectic density of an sp(3, R) highest weight vector by

� =
(

0 t

−q 0

)
t = q = diag(N1, N2, N3). (6)

When the symplectic group Sp(3, R) acts on an arbitrary many-body wavefunction � , the
transformed vector exp(σ (S))� is difficult to compute explicitly. However, the corresponding
symplectic density transforms simply according to the coadjoint action, ρ �→ Ad∗

gρ = gρg−1.
The coadjoint orbit Oρ is a smooth surface consisting of the density ρ and all transformed
densities Ad∗

gρ as g ranges over the entire symplectic group Sp(3, R).
The symplectic Casimirs C2s [ρ] are real-valued functions of the density

C2s[ρ] = (−1)s

2
tr(ρ2s ) s = 1, 2, 3. (7)

The Casimirs are constant on each coadjoint orbit, C2s[ρ] = C2s[Ad∗
gρ] for g ∈ Sp(3, R). The

trace of an odd power of the density is identically zero. Only the quadratic, quartic and sextet
Casimirs are functionally independent.

For the orbit O�, labelled by (N1, N2, N3), that contains the density of a highest weight
vector, the values of the symplectic Casimirs are

C2s[�] =
∑

k

N2s
k . (8)

Thus, the common level surface of the symplectic Casimir functions consists of all densities ρ,
equation (4), that satisfy the three algebraic equations (8). In the typical case of distinct Ni , the
three Casimir functions are functionally independent, and the level surface is 18-dimensional.

The subgroups of the symplectic group are transformation groups on each coadjoint orbit.
The orthogonal subgroup SO(3) rotates the matrices of the symplectic density, equation (4), as
follows: for R ∈ SO(3), n �→ RnRT , t �→ RtRT and q �→ RqRT . Each orbit of the rotation
subgroup contains a diagonal inertia tensor, q = diag

(
a2

1, a
2
2, a

2
3

)
, where ak > 0, k = 1, 2, 3,

are proportional to the axis lengths of the inertia ellipsoid.
When q is diagonal, the symplectic density represents the system in the rotating principal

axis frame, and it is denoted by ρ̃. In the rotating principal axis frame, the angular momentum
�I and Kelvin circulation �C components are inferred from the off-diagonal components of n:
for i, j, k cyclic, Ii = njk − nkj and Ci = (ak/aj )njk − (aj/ak)nkj .

1. Applications

The symplectic energy is a rotational scalar functional of the density. A simple sp(3, R) energy
functional is the sum of the harmonic oscillator and a quadrupole collective potential energy,
E[ρ] = E0[ρ] + V [ρ]. The isotropic harmonic oscillator energy is

E0[ρ] = 1
2 tr(t + q) (9)
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in units of h̄ω0. A scalar quadrupole potential energy functional depends on the quadratic and
cubic scalars,

v2 = 1
2 tr(q(2))2 v3 = 1

3 tr(q(2))3 = det q(2) (10)

where q
(2)
ij = qij − 1/3δij tr q . The scalars v2 and v3 are proportional to β2 and β3 cos 3γ ,

respectively. An elementary collective potential, in units of h̄ω0, that has been used in prior
sp(3, R) representation theory applications is

V [ρ] = b2v2 + b3v3 + b4v
2
2 (11)

where b2, b3, b4 are dimensionless real constants [1, 2]. Because it is a rotational scalar, the
energy functional may be evaluated conveniently in the principal axis frame.

Consider the special case of rotation about a principal axis, say the 1-axis. The nonzero
components of the angular momentum and the Kelvin circulation are I1 = I and C1 = C.
For rotors in equilibrium, the axis lengths are not vibrating, and, therefore, the diagonal
components of n vanish. The kinetic tensor t in the principal axis frame is diagonal for
an isotropic system. The sp(3, R) energy E[ρ̃] of a principal axis rotor with good I and C
simplifies to a function of the axis lengths of the inertia ellipsoid and the diagonal components
of the kinetic tensor.

As measured in the rotating frame of a principal axis rotor, the energy is the difference
between the sp(3, R) laboratory frame energy E and the collective kinetic energy of a Riemann
ellipsoid with angular momentum I and Kelvin circulation C,

Tcoll[ρ̃] = 1

4

[
(I + C)2

(a2 + a3)2
+

(I − C)2

(a2 − a3)2

]
(12)

in units of h̄ω0. Equilibrium solutions with angular momentum I and Kelvin circulation C are
critical points of the rotating frame energy on a coadjoint orbit surface. Such equilibria are
critical points of the functional

EIC[ρ̃] = E[ρ̃] − Tcoll[ρ̃] −
∑

k=1,2,3

m2kC2k[ρ̃] (13)

on the space of all principal axis frame densities ρ̃ with fixed I and C, where m2k are Lagrange
multipliers enforcing the constraint to a level surface of the sp(3, R) Casimirs. An equilibrium
density satisfies the six energy minimization conditions

∂EIC

∂ai

= ∂EIC

∂tii
= 0 (14)

and the three level surface equations, C2s [ρ̃] = ∑
N2s

i .
Energy minimization in the rotating frame determines analytically the kinetic tensor

t11 = a2
1 − W11 t22 = a2

2 − W22 +
(a2C − a3I)2

(
a2

2 − a2
3

)2 t33 = a2
3 − W33 +

(a3C − a2I)2

(
a2

2 − a2
3

)2

(15)

in terms of the potential tensor W in the principal axis frame

Wii = −ai

∂V

∂ai

. (16)

Thus, the sp(3, R) kinetic energy T of an equilibrium density is the sum of intrinsic and
collective energies,

T = 1

2
tr t = Tintr + Tcoll Tintr =

∑
k

(
a2

k − Wkk

)
. (17)



Letter to the Editor L539

W11

-4 -3 -2 -1 0

β

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

20Ne

SU(3)

Expt.

(λ,µ)=(8,0)N0=48.5

Figure 1. For 20Ne, the quadrupole deformation of its prolate sp(3, R) ground state is plotted
versus the component of the potential tensor in the direction of the rotation axis.

The axis lengths are solutions to the three Casimir equations. Suppose the coadjoint orbit
labels are ordered as N3 � N2 � N1 and set the u(3) labels N0 = N1 + N2 + N3, λ =
N3 − N2, µ = N2 − N1. The Casimir equations simplify to

3
√

a2
1 − W11a1 = N0 − λ − 2µ

3
√

a2
2 − W22a2 =

√
P +

√
Q (18)

3
√

a2
3 − W33a3 = (N0 − λ + µ)(N0 + 2λ + µ)√

P +
√

Q

where P = N2
0 + N0(λ + 2µ) + 5λ2/2 + λµ + µ2 − 9C2/2,Q = 9(λ2 −C2)((2N0 + λ + 2µ)2 −

9C2)/4. Note that Wkk is a function of the axis lengths. The axis lengths in (18) must be
determined self-consistently with the potential tensor.

1.1. Coadjoint orbits with µ = 0

When µ vanishes, a principal axis rotational band exists for angular momentum 0 � I � λ.
There are no real positive solutions to equations (18) for the axis lengths when I > λ. As
illustrations of Sp(3, R) AMFT, we study the yrast rotational band of a light (20Ne) and a
heavy (166Er) deformed nucleus. For 20Ne the leading Elliott su(3) representation is used:
N0 = 48.5, (λ, µ) = (8, 0) and h̄ω0 = 13.1 MeV. In figure 1 the quadrupole deformation
β of the prolate ground state of 20Ne is plotted versus the potential tensor component W11.
When the collective potential vanishes and the total energy reduces to the harmonic oscillator,
the deformation is the su(3) value, β = 0.32. Since the experimental deformation of 20Ne is
β = 0.73, the required value of the potential tensor is W11 = −3.0. Solutions for 0 < I < λ

are parametrized by the rigidity r that is defined as the ratio of the Kelvin circulation to its
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Figure 2. 20Ne yrast energy levels are compared to the sp(3, R) energies of a rigid rotor (r = 1)
and a Riemann rotor (r = 0.3).

Table 1. Sp(3, R) principal axis rotor for 20Ne.

I C β γ N

0 0.0 0.73 0 50.0
2 1.6 0.72 0.2 50.0
4 2.9 0.68 0.7 50.1
6 4.5 0.61 2.1 50.0
8 8.0 0.22 60 48.6

rigid body value. In figure 2 the experimental yrast energy levels of 20Ne are compared
to a rigid body r = 1 and a symplectic rotor with rigidity r = 0.3 when the potential
parameters b2 = −0.026, b3 = 0 and b4 = 2.4 × 10−5. Table 1 reports the circulation,
quadrupole deformation and the expectation N of the oscillator number operator when the
rigidity r = 0.3.

For a heavy deformed nucleus the rotational band solutions have a nearly constant
moment of inertia that depends on the rigidity and deformation. The potential determines
the deformation but it has a minor effect on the energies of yrast band members for small
angular momentum. For 166Er, the sp(3, R) labels are N0 = 813, λ = 108, µ = 0 and h̄ω0 =
7.82 MeV. When the potential parameters are b2 = 0, b3 = −0.0006, b4 = 1.65 × 10−6, the
quadrupole deformation of the prolate ground state matches experiment, β = 0.34. When the
rigidity r = 0.14, the calculated symplectic and experimental moments of inertia of the yrast
rotational band are similar.

2. Conclusion

From a physical perspective, good dynamical symmetry for densities is a weaker assertion
than good symmetry for wavefunctions. Even when wavefunctions that form a band are a
superposition of vectors from many irreducible representations, the densities of band members
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can share approximately common values for the algebra’s Casimirs. For most deformed nuclei,
mixing of symplectic representations is expected due to pairing and spin–orbit forces, yet
the values of the symplectic Casimirs can be approximately constant among band members.
Symplectic irreducible representation theory makes strong claims about nuclear wavefunctions
that are irrelevant to the description of geometrical states. Sp(3, R) coadjoint orbit theory can
explain geometrical collective properties, but it does not try to construct wavefunctions that
incorporate all the degrees of freedom in phase space.

The method of this letter may be applied to any dynamical symmetry model. Many
properties of the irreducible representations of a Lie group may be inferred from the geometry
of its coadjoint orbits [10].
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